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This paper describes the combination of Structural
Time Series analysis and Temporal Abstractions for
the interpretation of data coming from home
monitoring of diabetic patients. Blood Glucose data
are analyzed by a novel Bayesian technique for time
series analysis. The results obtained are post-
processed using Temporal Abstractions in order to
extract knowledge that can be exploited "at the point
of use" from physicians. The proposed data analysis
procedure can be viewed as a Knowledge Discovery
in Data Base process that is applied to time-varying
data. The work here described is part ofa Web-based
telemedicine system for the management of Insulin
Dependent Diabetes Mellitus patients, called T-
IDDM.

INTRODUCTION

The extraction of knowledge from a biomedical data
base requires the completion of the so-called
Knowledge Discovery in Data Base (KDD) process':
data are pre-processed and then analyzed by Data
Mining (DM) algorithms, whose results must be
subsequently interpreted and visualized. This process
can be iterated until useful information is taken out.
This paper deals with the problem of understanding
the evolution of patients undergoing a therapy over a
(relatively long) time. With respect to classical KDD
problems, the number of data involved in this
analysis is low, but the time dimension adds an
additional source of complexity, so that it is crucial to
combine different techniques for producing useful
knowledge, that can be exploited by final users. The
capability of automatically interpreting the results of
DM algorithms is essential for moving from a
research oriented to a user oriented approach to data
analysis.

In our work we were interested in providing
physicians with the most recent time series (TS)
analysis techniques, that can be exploited to evaluate
the metabolic control achieved by diabetic patients
during home monitoring2. The real understanding of a
TS analysis is sometimes difficult even for
statisticians; as a matter of fact, the typical result is
often a new time series (or a collection of time series)
that represents a smoothed version of the original

data set. For this reasons we have decided to interpret
the TS analysis result by resorting to Temporal
Abstraction (TA) techniques3, that can provide a
concise description of the time course of a certain
variable. In this way, TS analysis is used to generate
a collection of smoothed time series that are then
sununarized in an abstracted and comprehensible
view for the user. The KDD process has hence been
implemented through a four-step procedure: i) the
data are pre-processed in order to test the
applicability of the proposed algorithms; ii) a
structural Bayesian analysis is performed on the data;
iii) the results of the second step are further
elaborated through TA techniques; iv) the output of
the TA analysis is shown to physician for metabolic
control evaluation. In this paper we will describe
each of these steps.

This work is part of a EU funded telemedicine
project, called T-IDDM (Telematic Management of
Insulin Dependent Diabetes Mellitus), devoted to
provide patients and physicians with an Information
Technology infrastructure for a better management of
type I diabetes (IDDM). In this project, physician
relies on a set of distributed Web services, provided
by a Medical Workstation. The solutions described in
this paper are part of the data analysis and
visualization sub-systems, that are linked with the
data-management and decision support tools of the
architecture. For further details see Riva et al4.

INTERPRETING DIABETIC PATIENTS TIME
SERIES

The complexity of analyzing data coming from home
monitoring of IDDM patients is well known and
widely described in the literature25678. Physicians
must evaluate the status of the patient's glucose
metabolic control every 2/4 months by analyzing the
data coming from home monitoring, that usually
comprises Blood Glucose Levels (BGL), insulin
dosages, meal intakes, physical exercise and
occurrence of events that may affect glucose
metabolism (e.g. fever). These data are then
combined with mid-term control variables, like
glycosylated hemoglobin, to revise the insulin
therapy. In real clinical practice, often the only
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available data are the BGL measurements, that may
be automatically down-loaded from blood glucose
reflectometers. This practical limitation has lead to
the definition of decision support tools that are
mainly based on the BGL TS analysis9.

In particular, a way to judge the outcome of a certain
therapy scheme is to check if the BGL measurements
follow a cyclo-stationary behavior, i.e. if the daily
course of glycemia is approximately the same over
the monitoring time. The result of this analysis is the
patient's modal day, a characteristic daily BGL
pattern that summarizes the typical patient's response
to the therapy in a specific monitoring period. It may
be easily derived by the frequency histograms of
BGL measurements in the different times of the
day2'6'7'10. Of course, in addition to the modal day, it
is helpful to know if the BGL TS followed a certain
trend during the monitoring.

An interesting way of coping with the trend/cycle
pattern detection has been presented by T. Deutsch et
al.2 and has been implemented in the UTOPIA
system9: the BGL TS is analyzed by applying a
technique widely used in econometrics: the Structural
Time Series analysis. In our work we moved from the
UTOPIA results to two new directions: i) the
Structural TS analysis has been implemented in a
Bayesian context for obtaining time varying results
over a certain monitoring period (see next section); ii)
the results of the DM algorithm of step i) have been
post-processed by a TA technique for further
interpretation (see section 4).

Figure 1: Measurements ofBGL collected over 20
home monitoring days on a 12 year old pediatric

patient

A TRAINING EXAMPLE

In order to explain each step of our proposed method,

we refer to an example taken from the data-set
collected in the Policlinico S. Matteo Hospital of
Pavia. Figure 1 shows the BGL measurements
collected over twenty days by a 12 year old patient.
She measured BGL three times a day. Our goal is to
extract trends and the daily cycles from that data.
This goal seems quite complex at a first glance.

STRUCTURAL TIME SERIES ANALYSIS: A
BAYESIAN APPROACH

The basic assumption of Structural TS analysis is that
each measurement of the predicted variable can be
expressed as a sum of separate components, that
represent its underlying structure. In the case ofBGL
TS, the structure can be chosen as a composition of a
Trend component (T), a Cyclic component (C) and a
stochastic component (s), so that, for each
measurement BGL, (see Deutsch et al. 2 ):

BGL- = Ti + Ci + 6i (1)

The goal of the TS Analysis is then, starting from
BGL,, to extract T, and Ci. This task can be performed
by resorting to a variety of approaches, comprising
Kalman filtering. Apart from the different technical
choices, a fundamental issue must be decided: if,
given a certain monitoring period, it is necessary to
extract the best trend and the best cyclic components,
or if it is important to detect local trend and local
cycles. In our example, the first choice will lead to
select the best linear regression (BGL = BGLo + c x
time), and the most probable BGL daily pattern (e.g.
high BGL at breakfast and low BGL at dinner); the
second choice will instead allow the user to detect
different trends within the monitoring period as well
as different daily behaviors (e.g high BGL at
breakfast and low BGL at dinner until day 10 and
then high BGL at breakfast and dinner).

In our work we chose the second approach, that
provides the physician with (at the end of the KDD
process) a deep interpretation of the original TS. In
particular we have exploited a Bayesian approach for
signal reconstruction presented by Bellazzi and
Magni

The Trend dynamics is described by introducing an
additional variable (Si) that represents the variation of
the Trend component of one measurement to the next
one, so that Ti+1-T,=Si. If we assume that the Si time
course is described by a Markov Process, the time
evolution of the trend component can be specified by
the probability distribution P(Si Si-I).

The cqcle dynamics requires a more complex
model' . At each measurement time, the cycle Ci is
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seen as a linear composition of a sine and a cos
wave, with frequency determined by the do
measurement time (e.g. if there are ti
measurements per day, the frequency (I) is 1/3),
that

C+1 = Ci cos(27f) + R, sin(2;f)

Rj+j = -C, sin(27f) + R, cos(2#f)

The randomness of the model can be introduced
supposing that the Ri component is a stocha
variable. Given 2, the system evolution is descri
by the probability distribution P(Rj+j Ri, Ci).

A Dynamic Bayesian Network13'14 canf
represent this model, as shown in Figure 2.
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above is hence the extraction of two new TS (T and
C), from the TS of BGL. Such TS express, at each
measurement time, the local trend and cycle
components.

Figure 3 shows the results obtained on the training
example. T is smoother than the original TS, and

(2) presents an increasing trend during the first week,
and then a decreasing trend. C shows two different

by cycles, the first one until day 10 and the second one
Istic in the remaining period.
bed It is possible to note that at lunch (circles) BGL

measurements are usually higher than in the rest of

sily the day. The interpretation of the results is not easyfor the user, in particular for what concerns the
analysis of the cycle component. So, to transform the
above presented DM method into knowledge, we
need a further step.

200-

'150-

100

50-

102C-

cO
0 50

3 0

.2 -50

.r_

>, -100
0

m

Figure 2. The Bayesian Network representation of the
Structural Time Series Analysis

By assuming that:

i+SIS) = N(Si, ,)
P(Rj+j Ri, Ci ) = N(-Ci sin(2#f) + Ri cos(27f), o-2 )
P(BGL,) = N(T7 + Ci,,CT )

where N(.,.) denotes the Normal distribution, it is
possible to estimate T, and Ci given BGL, by resorting
to a Markov Chain Monte Carlo method, that is able
to work also in presence of unknown variances
TCh2e 2i a2ofmp

The final outcome of the BN machinery presented
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Figure 3: The results of the structural Time Series
analysis. The upper panel shows the trend
component and the original data, while the lower
panel shows the cycle component; the different daily
measurements are highlighted (breakfast
measurements are indicated with stars, lunch with
circles and dinner with crosses)

TEMPORAL ABSTRACTIONS FOR END-
USER INTERPRETATION

TAs are methods used to obtain an abstract
description of the course of multi-dimensional TS by
extracting their most relevant features. Hence, in
patient monitoring, TAs provide a useful instrument
to transform the fragmentary representation of the
patient's history into a more compact one. The basic
principle ofTA methods is to move from a time-point
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to an interval-based representation of the data. Given
a sequence of time stamped data (events), the
adjacent observations which follow meaningful
patterns are aggregated into intervals (episodes). A
formalization of the method is described in the work
of Shalkar, and its application in the diabetes domain
can be found in several papers3'6'7.

In our application we apply TA mechanisms that
extract trends (increase, decrease or stationary
patterns), and states (e.g. low, normal, high values)
from an uni-dimensional time series. These
mechanisms are exploited as means for interpreting
the results obtained by the method described in the
previous section. In particular, we have applied the
following analyses:

a) The T component (see previous section) expresses
the BGL local trend. Since daily cycles are cleaned
out, the T TS is smoother than the original one and it
can be easily analyzed by applying the trend TA
mechanism. The final results are the intervals
corresponding to the periods of significant BGL
increase or decrease.

b) The C component interpretation needs the
following post-processing procedure:

i) The monitoring period is analyzed to select the
intervals where the C is a significant component of
the original TS. This can be done by a TA that checks
the amplitude of oscillations of C, e.g. if the
difference between two consecutive C values is lower
than a threshold, the corresponding period is
discharged. The remaining analysis is performed on
the intervals selected at this step. ii) A BGL pattern is
extracted for each day. It is represented as a list of
measuring times ordered by the corresponding BGL
(e.g. if, given three measurements per day, the
maximum BGL measurement is at lunch and the
minimum is at breakfast, the pattern is <lunch,
dinner, breakfast>); iii) The days with the same
pattern in the C TS are searched and aggregated with
a state TA mechanism.

The output of this phase is hence a collection of
episodes that express: a) the local trends during the
monitoring period; b) the presence or absence of the
possible cyclic patterns.

VISUALIZATION

As mentioned in the introduction, the KDD process is
ended when the results arrive "at the point of use". In
the system we are developing, the final user
(physician) is provided with a Web-based interface,
that allows him/her to have access to all the services

needed for IDDM patient management. Also the TS
analysis is embedded into this framework, and the
TA results are visualized as shown in Figure 4.
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Figure 4: The visualization of the TS analysis after
applying TAs.

In the upper panel the original TS is shown, while the
trend analysis is depicted in the middle panel and the
cycle analysis in the lower one. In the trend analysis
picture, the increasing and decreasing episodes are
labeled and their time spans and locations are
graphically shown through bars that connect the start
and end time of each episode. In the example, a
increasing trend episode starts at day 1 and ends at
day 7, while a decreasing trend episode starts at day
15 and ends at day 20. In the cycle analysis, the most
significant daily patterns are selected (the patterns
that span more than 50% of the total monitoring
time), and, the period with an absence of a relevant
daily pattern is highlighted. Again, the time spans and
locations are graphically shown through bars that
connect the initial and end time of each episode. In
the example, it is possible to notice that in the days
10 and 11 there was an absence of a relevant daily
cycle, while during the last monitoring period the
patient had a persistent cycle with minima at dinner
and maxima at lunch (<lunch-breakfast-dinner>
pattern).

By combining the information coming from the trend
and cycle analysis, therapeutic suggestions may be
straightforward.
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DISCUSSION AND FUTURE RESEARCH
EFFORTS

In this paper we have described a process of
knowledge extraction from a biomedical TS. In
particular we concentrated on the analysis ofBGL TS
coming from IDDM patients home monitoring. The
raw data are first analyzed using a Bayesian
framework for structural TS analysis, and then post-
processed by TA techniques. The TA results are
visualized to final users. As a future research
direction we plan to generate from the TA analysis
results a textual description of the patients metabolic
response. The approach herein presented differs from
standard statistical techniques for TS smoothing in
two ways: a) the degree of smoothness of the derived
curves is automatically estimated from the data
(through the estimate of the unknown
variances 2,aaCb2); b) the results of the TS
analysis are abstracted into a high level
representation that is useful both for visualization and
for decision support

As mentioned in the introduction, the presented KDD
process is integrated into a larger framework, that
provides telemedicine services to patients and
physicians for IDDM management. Although the
analysis system herein presented is powerful, its
applicability is limited to periods in which the
number of daily BGL measurements is nearly
constant, so that missing data can be considered
"missing at random"15. ThisDM algorithm is not able
to cope with more complex situations, in which the
patient's life style changes abruptly; in this case more
"weak" techniques should be applied, as described in
Bellazzi et al.7. To provide physicians with an even
more "intelligent" support for data analysis, we plan
to pre-process the data in order to detect
automatically what technique should be used in each
period.
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